Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Hybrid-FL for Wireless Networks: Cooperative Learning Mechanism Using Non-IID Data (1905.07210v3)

Published 17 May 2019 in cs.LG, cs.DC, and stat.ML

Abstract: This paper proposes a cooperative mechanism for mitigating the performance degradation due to non-independent-and-identically-distributed (non-IID) data in collaborative ML, namely federated learning (FL), which trains an ML model using the rich data and computational resources of mobile clients without gathering their data to central systems. The data of mobile clients is typically non-IID owing to diversity among mobile clients' interests and usage, and FL with non-IID data could degrade the model performance. Therefore, to mitigate the degradation induced by non-IID data, we assume that a limited number (e.g., less than 1%) of clients allow their data to be uploaded to a server, and we propose a hybrid learning mechanism referred to as Hybrid-FL, wherein the server updates the model using the data gathered from the clients and aggregates the model with the models trained by clients. The Hybrid-FL solves both client- and data-selection problems via heuristic algorithms, which try to select the optimal sets of clients who train models with their own data, clients who upload their data to the server, and data uploaded to the server. The algorithms increase the number of clients participating in FL and make more data gather in the server IID, thereby improving the prediction accuracy of the aggregated model. Evaluations, which consist of network simulations and ML experiments, demonstrate that the proposed scheme achieves a 13.5% higher classification accuracy than those of the previously proposed schemes for the non-IID case.

Citations (132)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube