Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Separating k-Player from t-Player One-Way Communication, with Applications to Data Streams (1905.07135v2)

Published 17 May 2019 in cs.CC

Abstract: In a $k$-party communication problem, the $k$ players with inputs $x_1, x_2, \ldots, x_k$, respectively, want to evaluate a function $f(x_1, x_2, \ldots, x_k)$ using as little communication as possible. We consider the message-passing model, in which the inputs are partitioned in an arbitrary, possibly worst-case manner, among a smaller number $t$ of players ($t<k$). The $t$-player communication cost of computing $f$ can only be smaller than the $k$-player communication cost, since the $t$ players can trivially simulate the $k$-player protocol. But how much smaller can it be? We study deterministic and randomized protocols in the one-way model, and provide separations for product input distributions, which are optimal for low error probability protocols. We also provide much stronger separations when the input distribution is non-product. A key application of our results is in proving lower bounds for data stream algorithms. In particular, we give an optimal $\Omega(\epsilon{-2}\log(N) \log \log(mM))$ bits of space lower bound for the fundamental problem of $(1\pm\epsilon)$-approximating the number $|x|_0$ of non-zero entries of an $n$-dimensional vector $x$ after $m$ integer updates each of magnitude at most $M$, and with success probability $\ge 2/3$, in a strict turnstile stream. We additionally prove the matching $\Omega(\epsilon{-2}\log(N) \log \log(T))$ space lower bound for the problem when we have access to a heavy hitters oracle with threshold $T$. Our results match the best known upper bounds when $\epsilon\ge 1/\operatorname{polylog}(mM)$ and when $T = 2{\operatorname{poly}(1/\epsilon)}$ respectively. It also improves on the prior $\Omega(\epsilon{-2}\log(mM) )$ lower bound and separates the complexity of approximating $L_0$ from approximating the $p$-norm $L_p$ for $p$ bounded away from $0$, since the latter has an $O(\epsilon{-2}\log (mM))$ bit upper bound.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.