Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uncertainty quantification of molecular property prediction using Bayesian neural network models (1905.06945v1)

Published 19 Nov 2018 in physics.chem-ph, cs.LG, and stat.ML

Abstract: In chemistry, deep neural network models have been increasingly utilized in a variety of applications such as molecular property predictions, novel molecule designs, and planning chemical reactions. Despite the rapid increase in the use of state-of-the-art models and algorithms, deep neural network models often produce poor predictions in real applications because model performance is highly dependent on the quality of training data. In the field of molecular analysis, data are mostly obtained from either complicated chemical experiments or approximate mathematical equations, and then quality of data may be questioned.In this paper, we quantify uncertainties of prediction using Bayesian neural networks in molecular property predictions. We estimate both model-driven and data-driven uncertainties, demonstrating the usefulness of uncertainty quantification as both a quality checker and a confidence indicator with the three experiments. Our results manifest that uncertainty quantification is necessary for more reliable molecular applications and Bayesian neural network models can be a practical approach.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.