Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MinoanER: Schema-Agnostic, Non-Iterative, Massively Parallel Resolution of Web Entities (1905.06170v1)

Published 15 May 2019 in cs.DB

Abstract: Entity Resolution (ER) aims to identify different descriptions in various Knowledge Bases (KBs) that refer to the same entity. ER is challenged by the Variety, Volume and Veracity of entity descriptions published in the Web of Data. To address them, we propose the MinoanER framework that simultaneously fulfills full automation, support of highly heterogeneous entities, and massive parallelization of the ER process. MinoanER leverages a token-based similarity of entities to define a new metric that derives the similarity of neighboring entities from the most important relations, as they are indicated only by statistics. A composite blocking method is employed to capture different sources of matching evidence from the content, neighbors, or names of entities. The search space of candidate pairs for comparison is compactly abstracted by a novel disjunctive blocking graph and processed by a non-iterative, massively parallel matching algorithm that consists of four generic, schema-agnostic matching rules that are quite robust with respect to their internal configuration. We demonstrate that the effectiveness of MinoanER is comparable to existing ER tools over real KBs exhibiting low Variety, but it outperforms them significantly when matching KBs with high Variety.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.