Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DARNet: Deep Active Ray Network for Building Segmentation (1905.05889v1)

Published 15 May 2019 in cs.CV

Abstract: In this paper, we propose a Deep Active Ray Network (DARNet) for automatic building segmentation. Taking an image as input, it first exploits a deep convolutional neural network (CNN) as the backbone to predict energy maps, which are further utilized to construct an energy function. A polygon-based contour is then evolved via minimizing the energy function, of which the minimum defines the final segmentation. Instead of parameterizing the contour using Euclidean coordinates, we adopt polar coordinates, i.e., rays, which not only prevents self-intersection but also simplifies the design of the energy function. Moreover, we propose a loss function that directly encourages the contours to match building boundaries. Our DARNet is trained end-to-end by back-propagating through the energy minimization and the backbone CNN, which makes the CNN adapt to the dynamics of the contour evolution. Experiments on three building instance segmentation datasets demonstrate our DARNet achieves either state-of-the-art or comparable performances to other competitors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dominic Cheng (1 paper)
  2. Renjie Liao (65 papers)
  3. Sanja Fidler (184 papers)
  4. Raquel Urtasun (161 papers)
Citations (103)

Summary

We haven't generated a summary for this paper yet.