Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

List-Decodable Linear Regression (1905.05679v3)

Published 14 May 2019 in cs.DS, cs.LG, and stat.ML

Abstract: We give the first polynomial-time algorithm for robust regression in the list-decodable setting where an adversary can corrupt a greater than $1/2$ fraction of examples. For any $\alpha < 1$, our algorithm takes as input a sample ${(x_i,y_i)}_{i \leq n}$ of $n$ linear equations where $\alpha n$ of the equations satisfy $y_i = \langle x_i,\ell*\rangle +\zeta$ for some small noise $\zeta$ and $(1-\alpha)n$ of the equations are {\em arbitrarily} chosen. It outputs a list $L$ of size $O(1/\alpha)$ - a fixed constant - that contains an $\ell$ that is close to $\ell*$. Our algorithm succeeds whenever the inliers are chosen from a \emph{certifiably} anti-concentrated distribution $D$. In particular, this gives a $(d/\alpha){O(1/\alpha8)}$ time algorithm to find a $O(1/\alpha)$ size list when the inlier distribution is standard Gaussian. For discrete product distributions that are anti-concentrated only in \emph{regular} directions, we give an algorithm that achieves similar guarantee under the promise that $\ell*$ has all coordinates of the same magnitude. To complement our result, we prove that the anti-concentration assumption on the inliers is information-theoretically necessary. Our algorithm is based on a new framework for list-decodable learning that strengthens the `identifiability to algorithms' paradigm based on the sum-of-squares method. In an independent and concurrent work, Raghavendra and Yau also used the Sum-of-Squares method to give a similar result for list-decodable regression.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube