Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Disentangled Human Body Embedding Based on Deep Hierarchical Neural Network (1905.05622v2)

Published 14 May 2019 in cs.CV, cs.GR, and cs.LG

Abstract: Human bodies exhibit various shapes for different identities or poses, but the body shape has certain similarities in structure and thus can be embedded in a low-dimensional space. This paper presents an autoencoder-like network architecture to learn disentangled shape and pose embedding specifically for the 3D human body. This is inspired by recent progress of deformation-based latent representation learning. To improve the reconstruction accuracy, we propose a hierarchical reconstruction pipeline for the disentangling process and construct a large dataset of human body models with consistent connectivity for the learning of the neural network. Our learned embedding can not only achieve superior reconstruction accuracy but also provide great flexibility in 3D human body generation via interpolation, bilinear interpolation, and latent space sampling. The results from extensive experiments demonstrate the powerfulness of our learned 3D human body embedding in various applications.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.