Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Estimating Socioeconomic Status via Temporal-Spatial Mobility Analysis -- A Case Study of Smart Card Data (1905.05437v1)

Published 14 May 2019 in cs.CY

Abstract: The notion of socioeconomic status (SES) of a person or family reflects the corresponding entity's social and economic rank in society. Such information may help applications like bank loaning decisions and provide measurable inputs for related studies like social stratification, social welfare and business planning. Traditionally, estimating SES for a large population is performed by national statistical institutes through a large number of household interviews, which is highly expensive and time-consuming. Recently researchers try to estimate SES from data sources like mobile phone call records and online social network platforms, which is much cheaper and faster. Instead of relying on these data about users' cyberspace behaviors, various alternative data sources on real-world users' behavior such as mobility may offer new insights for SES estimation. In this paper, we leverage Smart Card Data (SCD) for public transport systems which records the temporal and spatial mobility behavior of a large population of users. More specifically, we develop S2S, a deep learning based approach for estimating people's SES based on their SCD. Essentially, S2S models two types of SES-related features, namely the temporal-sequential feature and general statistical feature, and leverages deep learning for SES estimation. We evaluate our approach in an actual dataset, Shanghai SCD, which involves millions of users. The proposed model clearly outperforms several state-of-art methods in terms of various evaluation metrics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.