Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Effective Two-Branch Model-Based Deep Network for Single Image Deraining (1905.05404v2)

Published 14 May 2019 in cs.CV

Abstract: Removing rain effects from an image is of importance for various applications such as autonomous driving, drone piloting, and photo editing. Conventional methods rely on some heuristics to handcraft various priors to remove or separate the rain effects from an image. Recent deep learning models are proposed to learn end-to-end methods to complete this task. However, they often fail to obtain satisfactory results in many realistic scenarios, especially when the observed images suffer from heavy rain. Heavy rain brings not only rain streaks but also haze-like effect caused by the accumulation of tiny raindrops. Different from the existing deep learning deraining methods that mainly focus on handling the rain streaks, we design a deep neural network by incorporating a physical raining image model. Specifically, in the proposed model, two branches are designed to handle both the rain streaks and haze-like effects. An additional submodule is jointly trained to finally refine the results, which give the model flexibility to control the strength of removing the mist. Extensive experiments on several datasets show that our method outperforms the state-of-the-art in both objective assessments and visual quality.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.