Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning and Exploiting Multiple Subgoals for Fast Exploration in Hierarchical Reinforcement Learning (1905.05180v1)

Published 13 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Hierarchical Reinforcement Learning (HRL) exploits temporally extended actions, or options, to make decisions from a higher-dimensional perspective to alleviate the sparse reward problem, one of the most challenging problems in reinforcement learning. The majority of existing HRL algorithms require either significant manual design with respect to the specific environment or enormous exploration to automatically learn options from data. To achieve fast exploration without using manual design, we devise a multi-goal HRL algorithm, consisting of a high-level policy Manager and a low-level policy Worker. The Manager provides the Worker multiple subgoals at each time step. Each subgoal corresponds to an option to control the environment. Although the agent may show some confusion at the beginning of training since it is guided by three diverse subgoals, the agent's behavior policy will quickly learn how to respond to multiple subgoals from the high-level controller on different occasions. By exploiting multiple subgoals, the exploration efficiency is significantly improved. We conduct experiments in Atari's Montezuma's Revenge environment, a well-known sparse reward environment, and in doing so achieve the same performance as state-of-the-art HRL methods with substantially reduced training time cost.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)