Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging synthetic imagery for collision-at-sea avoidance (1905.04828v1)

Published 13 May 2019 in cs.CV

Abstract: Maritime collisions involving multiple ships are considered rare, but in 2017 several United States Navy vessels were involved in fatal at-sea collisions that resulted in the death of seventeen American Servicemembers. The experimentation introduced in this paper is a direct response to these incidents. We propose a shipboard Collision-At-Sea avoidance system, based on video image processing, that will help ensure the safe stationing and navigation of maritime vessels. Our system leverages a convolutional neural network trained on synthetic maritime imagery in order to detect nearby vessels within a scene, perform heading analysis of detected vessels, and provide an alert in the presence of an inbound vessel. Additionally, we present the Navigational Hazards - Synthetic (NAVHAZ-Synthetic) dataset. This dataset, is comprised of one million annotated images of ten vessel classes observed from virtual vessel-mounted cameras, as well as a human "Topside Lookout" perspective. NAVHAZ-Synthetic includes imagery displaying varying sea-states, lighting conditions, and optical degradations such as fog, sea-spray, and salt-accumulation. We present our results on the use of synthetic imagery in a computer vision based collision-at-sea warning system with promising performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.