Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Solving Dependency Quantified Boolean Formulas Using Quantifier Localization (1905.04755v2)

Published 12 May 2019 in cs.LO

Abstract: Dependency quantified Boolean formulas (DQBFs) are a powerful formalism, which subsumes quantified Boolean formulas (QBFs) and allows an explicit specification of dependencies of existential variables on universal variables. Driven by the needs of various applications which can be encoded by DQBFs in a natural, compact, and elegant way, research on DQBF solving has emerged in the past few years. However, research focused on closed DQBFs in prenex form (where all quantifiers are placed in front of a propositional formula), while non-prenex DQBFs have almost not been studied in the literature. In this paper, we provide a formal definition for syntax and semantics of non-closed non-prenex DQBFs and prove useful properties enabling quantifier localization. Moreover, we make use of our theory by integrating quantifier localization into a state-of-the-art DQBF solver. Experiments with prenex DQBF benchmarks, including all instances from the QBFEVAL'18-'20 competitions, clearly show that quantifier localization pays off in this context.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.