Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Deep Vocoder: Low Bit Rate Compression of Speech with Deep Autoencoder (1905.04709v2)

Published 12 May 2019 in cs.MM, cs.IT, cs.SD, eess.AS, and math.IT

Abstract: Inspired by the success of deep neural networks (DNNs) in speech processing, this paper presents Deep Vocoder, a direct end-to-end low bit rate speech compression method with deep autoencoder (DAE). In Deep Vocoder, DAE is used for extracting the latent representing features (LRFs) of speech, which are then efficiently quantized by an analysis-by-synthesis vector quantization (AbS VQ) method. AbS VQ aims to minimize the perceptual spectral reconstruction distortion rather than the distortion of LRFs vector itself. Also, a suboptimal codebook searching technique is proposed to further reduce the computational complexity. Experimental results demonstrate that Deep Vocoder yields substantial improvements in terms of frequency-weighted segmental SNR, STOI and PESQ score when compared to the output of the conventional SQ- or VQ-based codec. The yielded PESQ score over the TIMIT corpus is 3.34 and 3.08 for speech coding at 2400 bit/s and 1200 bit/s, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube