Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On the Performance of Thompson Sampling on Logistic Bandits (1905.04654v1)

Published 12 May 2019 in stat.ML and cs.LG

Abstract: We study the logistic bandit, in which rewards are binary with success probability $\exp(\beta a\top \theta) / (1 + \exp(\beta a\top \theta))$ and actions $a$ and coefficients $\theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $\beta$, we establish a regret bound for Thompson sampling that is independent of $\beta$. Specifically, we establish that, when the set of feasible actions is identical to the set of possible coefficient vectors, the Bayesian regret of Thompson sampling is $\tilde{O}(d\sqrt{T})$. We also establish a $\tilde{O}(\sqrt{d\eta T}/\lambda)$ bound that applies more broadly, where $\lambda$ is the worst-case optimal log-odds and $\eta$ is the "fragility dimension," a new statistic we define to capture the degree to which an optimal action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays an essential role by showing that, for any $\epsilon > 0$, no algorithm can achieve $\mathrm{poly}(d, 1/\lambda)\cdot T{1-\epsilon}$ regret.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube