Papers
Topics
Authors
Recent
2000 character limit reached

Offset Calibration for Appearance-Based Gaze Estimation via Gaze Decomposition (1905.04451v2)

Published 11 May 2019 in cs.CV

Abstract: Appearance-based gaze estimation provides relatively unconstrained gaze tracking. However, subject-independent models achieve limited accuracy partly due to individual variations. To improve estimation, we propose a novel gaze decomposition method and a single gaze point calibration method, motivated by our finding that the inter-subject squared bias exceeds the intra-subject variance for a subject-independent estimator. We decompose the gaze angle into a subject-dependent bias term and a subject-independent term between the gaze angle and the bias. The subject-independent term is estimated by a deep convolutional network. For calibration-free tracking, we set the subject-dependent bias term to zero. For single gaze point calibration, we estimate the bias from a few images taken as the subject gazes at a point. Experiments on three datasets indicate that as a calibration-free estimator, the proposed method outperforms the state-of-the-art methods by up to $10.0\%$. The proposed calibration method is robust and reduces estimation error significantly (up to $35.6\%$), achieving state-of-the-art performance for appearance-based eye trackers with calibration.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.