Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Markov perfect equilibria in non-stationary mean-field games (1905.04154v2)

Published 10 May 2019 in cs.GT and cs.SY

Abstract: In this paper, we consider both finite and infinite horizon discounted dynamic mean-field games where there is a large population of homogeneous players sequentially making strategic decisions and each player is affected by other players through an aggregate population state. Each player has a private type that only she observes. Such games have been studied in the literature under simplifying assumption that population state dynamics are stationary. In this paper, we consider non-stationary population state dynamics and present a novel backward recursive algorithm to compute Markov perfect equilibrium (MPE) that depend on both, a player's private type, and current (dynamic) population state. Using this algorithm, we study a security problem in cyberphysical system where infected nodes put negative externality on the system, and each node makes a decision to get vaccinated. We numerically compute MPE of the game.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)