Markov perfect equilibria in non-stationary mean-field games (1905.04154v2)
Abstract: In this paper, we consider both finite and infinite horizon discounted dynamic mean-field games where there is a large population of homogeneous players sequentially making strategic decisions and each player is affected by other players through an aggregate population state. Each player has a private type that only she observes. Such games have been studied in the literature under simplifying assumption that population state dynamics are stationary. In this paper, we consider non-stationary population state dynamics and present a novel backward recursive algorithm to compute Markov perfect equilibrium (MPE) that depend on both, a player's private type, and current (dynamic) population state. Using this algorithm, we study a security problem in cyberphysical system where infected nodes put negative externality on the system, and each node makes a decision to get vaccinated. We numerically compute MPE of the game.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.