Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design of Artificial Intelligence Agents for Games using Deep Reinforcement Learning (1905.04127v1)

Published 10 May 2019 in cs.LG and cs.AI

Abstract: In order perform a large variety of tasks and to achieve human-level performance in complex real-world environments, AI Agents must be able to learn from their past experiences and gain both knowledge and an accurate representation of their environment from raw sensory inputs. Traditionally, AI agents have suffered from difficulties in using only sensory inputs to obtain a good representation of their environment and then mapping this representation to an efficient control policy. Deep reinforcement learning algorithms have provided a solution to this issue. In this study, the performance of different conventional and novel deep reinforcement learning algorithms was analysed. The proposed method utilises two types of algorithms, one trained with a variant of Q-learning (DQN) and another trained with SARSA learning (DSN) to assess the feasibility of using direct feedback alignment, a novel biologically plausible method for back-propagating the error. These novel agents, alongside two similar agents trained with the conventional backpropagation algorithm, were tested by using the OpenAI Gym toolkit on several classic control theory problems and Atari 2600 video games. The results of this investigation open the way into new, biologically-inspired deep reinforcement learning algorithms, and their implementation on neuromorphic hardware.

Citations (1)

Summary

We haven't generated a summary for this paper yet.