Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ES-CTC: A Deep Neuroevolution Model for Cooperative Intelligent Freeway Traffic Control (1905.04083v1)

Published 10 May 2019 in cs.MA

Abstract: Cooperative intelligent freeway traffic control is an important application in intelligent transportation systems, which is expected to improve the mobility of freeway networks. In this paper, we propose a deep neuroevolution model, called ES-CTC, to achieve a cooperative control scheme of ramp metering, differential variable speed limits and lane change control agents for improving freeway traffic. In this model, the graph convolutional networks are used to learn more meaningful spatial pattern from traffic sensors, a knowledge sharing layer is designed for communication between different agents. The proposed neural networks structure allows different agents share knowledge with each other and execute action asynchronously. In order to address the delayed reward and action asynchronism issues, the evolutionary strategy is utilized to train the agents under stochastic traffic demands. The experimental results on a simulated freeway section indicate that ES-CTC is a viable approach and outperforms several existing methods

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.