Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian Optimized Continual Learning with Attention Mechanism (1905.03980v1)

Published 10 May 2019 in cs.LG and stat.ML

Abstract: Though neural networks have achieved much progress in various applications, it is still highly challenging for them to learn from a continuous stream of tasks without forgetting. Continual learning, a new learning paradigm, aims to solve this issue. In this work, we propose a new model for continual learning, called Bayesian Optimized Continual Learning with Attention Mechanism (BOCL) that dynamically expands the network capacity upon the arrival of new tasks by Bayesian optimization and selectively utilizes previous knowledge (e.g. feature maps of previous tasks) via attention mechanism. Our experiments on variants of MNIST and CIFAR-100 demonstrate that our methods outperform the state-of-the-art in preventing catastrophic forgetting and fitting new tasks better.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.