Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

On Unlimited Sampling and Reconstruction (1905.03901v2)

Published 10 May 2019 in cs.IT, eess.SP, and math.IT

Abstract: Shannon's sampling theorem is one of the cornerstone topics that is well understood and explored, both mathematically and algorithmically. That said, practical realization of this theorem still suffers from a severe bottleneck due to the fundamental assumption that the samples can span an arbitrary range of amplitudes. In practice, the theorem is realized using so-called analog-to-digital converters (ADCs) which clip or saturate whenever the signal amplitude exceeds the maximum recordable ADC voltage thus leading to a significant information loss. In this paper, we develop an alternative paradigm for sensing and recovery, called the Unlimited Sampling Framework. It is based on the observation that when a signal is mapped to an appropriate bounded interval via a modulo operation before entering the ADC, the saturation problem no longer exists, but one rather encounters a different type of information loss due to the modulo operation. Such an alternative setup can be implemented, for example, via so-called folding or self-reset ADCs, as they have been proposed in various contexts in the circuit design literature. The key task that we need to accomplish in order to cope with this new type of information loss is to recover a bandlimited signal from its modulo samples. In this paper we derive conditions when perfect recovery is possible and complement them with a stable recovery algorithm. The sampling density required to guarantee recovery is independent of the maximum recordable ADC voltage and depends on the signal bandwidth only. Our recovery guarantees extend to measurements affected by bounded noise, which includes the case of round-off quantization. Numerical experiments validate our approach. Applications of the unlimited sampling paradigm can be found in a number of fields such as signal processing, communication and imaging.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.