Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Unlimited Sampling and Reconstruction (1905.03901v2)

Published 10 May 2019 in cs.IT, eess.SP, and math.IT

Abstract: Shannon's sampling theorem is one of the cornerstone topics that is well understood and explored, both mathematically and algorithmically. That said, practical realization of this theorem still suffers from a severe bottleneck due to the fundamental assumption that the samples can span an arbitrary range of amplitudes. In practice, the theorem is realized using so-called analog-to-digital converters (ADCs) which clip or saturate whenever the signal amplitude exceeds the maximum recordable ADC voltage thus leading to a significant information loss. In this paper, we develop an alternative paradigm for sensing and recovery, called the Unlimited Sampling Framework. It is based on the observation that when a signal is mapped to an appropriate bounded interval via a modulo operation before entering the ADC, the saturation problem no longer exists, but one rather encounters a different type of information loss due to the modulo operation. Such an alternative setup can be implemented, for example, via so-called folding or self-reset ADCs, as they have been proposed in various contexts in the circuit design literature. The key task that we need to accomplish in order to cope with this new type of information loss is to recover a bandlimited signal from its modulo samples. In this paper we derive conditions when perfect recovery is possible and complement them with a stable recovery algorithm. The sampling density required to guarantee recovery is independent of the maximum recordable ADC voltage and depends on the signal bandwidth only. Our recovery guarantees extend to measurements affected by bounded noise, which includes the case of round-off quantization. Numerical experiments validate our approach. Applications of the unlimited sampling paradigm can be found in a number of fields such as signal processing, communication and imaging.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube