Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Ship classification from overhead imagery using synthetic data and domain adaptation (1905.03894v1)

Published 10 May 2019 in cs.CV

Abstract: In this paper, we revisit the problem of classifying ships (maritime vessels) detected from overhead imagery. Despite the last decade of research on this very important and pertinent problem, it remains largely unsolved. One of the major issues with the detection and classification of ships and other objects in the maritime domain is the lack of substantial ground truth data needed to train state-of-the-art machine learning algorithms. We address this issue by building a large (200k) synthetic image dataset using the Unity gaming engine and 3D ship models. We demonstrate that with the use of synthetic data, classification performance increases dramatically, particularly when there are very few annotated images used in training.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.