Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FASS: A Fairness-Aware Approach for Concurrent Service Selection with Constraints (1905.03857v1)

Published 7 May 2019 in cs.DC

Abstract: The increasing momentum of service-oriented architecture has led to the emergence of divergent delivered services, where service selection is meritedly required to obtain the target service fulfilling the requirements from both users and service providers. Despite many existing works have extensively handled the issue of service selection, it remains an open question in the case where requests from multiple users are performed simultaneously by a certain set of shared candidate services. Meanwhile, there exist some constraints enforced on the context of service selection, e.g. service placement location and contracts between users and service providers. In this paper, we focus on the QoS-aware service selection with constraints from a fairness aspect, with the objective of achieving max-min fairness across multiple service requests sharing candidate service sets. To be more specific, we study the problem of fairly selecting services from shared candidate sets while service providers are self-motivated to offer better services with higher QoS values. We formulate this problem as a lexicographical maximization problem, which is far from trivial to deal with practically due to its inherently multi-objective and discrete nature. A fairness-aware algorithm for concurrent service selection (FASS) is proposed, whose basic idea is to iteratively solve the single-objective subproblems by transforming them into linear programming problems. Experimental results based on real-world datasets also validate the effectiveness and practicality of our proposed approach.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.