Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Agnostic Lane Detection (1905.03704v1)

Published 2 May 2019 in cs.CV and cs.AI

Abstract: Lane detection is an important yet challenging task in autonomous driving, which is affected by many factors, e.g., light conditions, occlusions caused by other vehicles, irrelevant markings on the road and the inherent long and thin property of lanes. Conventional methods typically treat lane detection as a semantic segmentation task, which assigns a class label to each pixel of the image. This formulation heavily depends on the assumption that the number of lanes is pre-defined and fixed and no lane changing occurs, which does not always hold. To make the lane detection model applicable to an arbitrary number of lanes and lane changing scenarios, we adopt an instance segmentation approach, which first differentiates lanes and background and then classify each lane pixel into each lane instance. Besides, a multi-task learning paradigm is utilized to better exploit the structural information and the feature pyramid architecture is used to detect extremely thin lanes. Three popular lane detection benchmarks, i.e., TuSimple, CULane and BDD100K, are used to validate the effectiveness of our proposed algorithm.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)