Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds (1905.03691v1)

Published 18 Apr 2019 in cs.CV, cs.MM, and eess.IV

Abstract: Point cloud is a fundamental 3D representation which is widely used in real world applications such as autonomous driving. As a newly-developed media format which is characterized by complexity and irregularity, point cloud creates a need for compression algorithms which are more flexible than existing codecs. Recently, autoencoders(AEs) have shown their effectiveness in many visual analysis tasks as well as image compression, which inspires us to employ it in point cloud compression. In this paper, we propose a general autoencoder-based architecture for lossy geometry point cloud compression. To the best of our knowledge, it is the first autoencoder-based geometry compression codec that directly takes point clouds as input rather than voxel grids or collections of images. Compared with handcrafted codecs, this approach adapts much more quickly to previously unseen media contents and media formats, meanwhile achieving competitive performance. Our architecture consists of a pointnet-based encoder, a uniform quantizer, an entropy estimation block and a nonlinear synthesis transformation module. In lossy geometry compression of point cloud, results show that the proposed method outperforms the test model for categories 1 and 3 (TMC13) published by MPEG-3DG group on the 125th meeting, and on average a 73.15\% BD-rate gain is achieved.

Citations (79)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.