Papers
Topics
Authors
Recent
2000 character limit reached

Active Perception and Control from Temporal Logic Specifications

Published 9 May 2019 in cs.SY | (1905.03662v1)

Abstract: Next-generation autonomous systems must execute complex tasks in uncertain environments. Active perception, where an autonomous agent selects actions to increase knowledge about the environment, has gained traction in recent years for motion planning under uncertainty. One prominent approach is planning in the belief space. However, most belief-space planning starts with a known reward function, which can be difficult to specify for complex tasks. On the other hand, symbolic control methods automatically synthesize controllers to achieve logical specifications, but often do not deal well with uncertainty. In this work, we propose a framework for scalable task and motion planning in uncertain environments that combines the best of belief-space planning and symbolic control. Specifically, we provide a counterexample-guided-inductive-synthesis algorithm for probabilistic temporal logic over reals (PRTL) specifications in the belief space. Our method automatically generates actions that improve confidence in a belief when necessary, thus using active perception to satisfy PRTL specifications.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.