Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification (1905.03577v2)

Published 9 May 2019 in cs.CV

Abstract: In recent years, deep learning has presented a great advance in hyperspectral image (HSI) classification. Particularly, long short-term memory (LSTM), as a special deep learning structure, has shown great ability in modeling long-term dependencies in the time dimension of video or the spectral dimension of HSIs. However, the loss of spatial information makes it quite difficult to obtain the better performance. In order to address this problem, two novel deep models are proposed to extract more discriminative spatial-spectral features by exploiting the Convolutional LSTM (ConvLSTM). By taking the data patch in a local sliding window as the input of each memory cell band by band, the 2-D extended architecture of LSTM is considered for building the spatial-spectral ConvLSTM 2-D Neural Network (SSCL2DNN) to model long-range dependencies in the spectral domain. To better preserve the intrinsic structure information of the hyperspectral data, the spatial-spectral ConvLSTM 3-D Neural Network (SSCL3DNN) is proposed by extending LSTM to 3-D version for further improving the classification performance. The experiments, conducted on three commonly used HSI data sets, demonstrate that the proposed deep models have certain competitive advantages and can provide better classification performance than other state-of-the-art approaches.

Citations (136)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.