Papers
Topics
Authors
Recent
2000 character limit reached

Embedding Human Knowledge into Deep Neural Network via Attention Map (1905.03540v4)

Published 9 May 2019 in cs.CV

Abstract: In this work, we aim to realize a method for embedding human knowledge into deep neural networks. While the conventional method to embed human knowledge has been applied for non-deep machine learning, it is challenging to apply it for deep learning models due to the enormous number of model parameters. To tackle this problem, we focus on the attention mechanism of an attention branch network (ABN). In this paper, we propose a fine-tuning method that utilizes a single-channel attention map which is manually edited by a human expert. Our fine-tuning method can train a network so that the output attention map corresponds to the edited ones. As a result, the fine-tuned network can output an attention map that takes into account human knowledge. Experimental results with ImageNet, CUB-200-2010, and IDRiD demonstrate that it is possible to obtain a clear attention map for a visual explanation and improve the classification performance. Our findings can be a novel framework for optimizing networks through human intuitive editing via a visual interface and suggest new possibilities for human-machine cooperation in addition to the improvement of visual explanations.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.