Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Weakly Labeling the Antarctic: The Penguin Colony Case (1905.03313v2)

Published 8 May 2019 in cs.CV

Abstract: Antarctic penguins are important ecological indicators -- especially in the face of climate change. In this work, we present a deep learning based model for semantic segmentation of Ad\'elie penguin colonies in high-resolution satellite imagery. To train our segmentation models, we take advantage of the Penguin Colony Dataset: a unique dataset with 2044 georeferenced cropped images from 193 Ad\'elie penguin colonies in Antarctica. In the face of a scarcity of pixel-level annotation masks, we propose a weakly-supervised framework to effectively learn a segmentation model from weak labels. We use a classification network to filter out data unsuitable for the segmentation network. This segmentation network is trained with a specific loss function, based on the average activation, to effectively learn from the data with the weakly-annotated labels. Our experiments show that adding weakly-annotated training examples significantly improves segmentation performance, increasing the mean Intersection-over-Union from 42.3 to 60.0% on the Penguin Colony Dataset.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.