Emergent Mind

Smoothing Policies and Safe Policy Gradients

(1905.03231)
Published May 8, 2019 in cs.LG and stat.ML

Abstract

Policy Gradient (PG) algorithms are among the best candidates for the much-anticipated applications of reinforcement learning to real-world control tasks, such as robotics. However, the trial-and-error nature of these methods poses safety issues whenever the learning process itself must be performed on a physical system or involves any form of human-computer interaction. In this paper, we address a specific safety formulation, where both goals and dangers are encoded in a scalar reward signal and the learning agent is constrained to never worsen its performance, measured as the expected sum of rewards. By studying actor-only policy gradient from a stochastic optimization perspective, we establish improvement guarantees for a wide class of parametric policies, generalizing existing results on Gaussian policies. This, together with novel upper bounds on the variance of policy gradient estimators, allows us to identify meta-parameter schedules that guarantee monotonic improvement with high probability. The two key meta-parameters are the step size of the parameter updates and the batch size of the gradient estimates. Through a joint, adaptive selection of these meta-parameters, we obtain a policy gradient algorithm with monotonic improvement guarantees.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.