Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-Adjusting Linear Networks (1905.02472v1)

Published 7 May 2019 in cs.DS and cs.NI

Abstract: Emerging networked systems become increasingly flexible and reconfigurable. This introduces an opportunity to adjust networked systems in a demand-aware manner, leveraging spatial and temporal locality in the workload for online optimizations. However, it also introduces a trade-off: while more frequent adjustments can improve performance, they also entail higher reconfiguration costs. This paper initiates the formal study of linear networks which self-adjust to the demand in an online manner, striking a balance between the benefits and costs of reconfigurations. We show that the underlying algorithmic problem can be seen as a distributed generalization of the classic dynamic list update problem known from self-adjusting datastructures: in a network, requests can occur between node pairs. This distributed version turns out to be significantly harder than the classical problem in generalizes. Our main results are a $\Omega(\log{n})$ lower bound on the competitive ratio, and a (distributed) online algorithm that is $O(\log{n})$-competitive if the communication requests are issued according to a linear order.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube