Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adapting Image Super-Resolution State-of-the-arts and Learning Multi-model Ensemble for Video Super-Resolution (1905.02462v1)

Published 7 May 2019 in cs.CV

Abstract: Recently, image super-resolution has been widely studied and achieved significant progress by leveraging the power of deep convolutional neural networks. However, there has been limited advancement in video super-resolution (VSR) due to the complex temporal patterns in videos. In this paper, we investigate how to adapt state-of-the-art methods of image super-resolution for video super-resolution. The proposed adapting method is straightforward. The information among successive frames is well exploited, while the overhead on the original image super-resolution method is negligible. Furthermore, we propose a learning-based method to ensemble the outputs from multiple super-resolution models. Our methods show superior performance and rank second in the NTIRE2019 Video Super-Resolution Challenge Track 1.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.