Semantic Adversarial Network for Zero-Shot Sketch-Based Image Retrieval (1905.02327v2)
Abstract: Zero-shot sketch-based image retrieval (ZS-SBIR) is a specific cross-modal retrieval task for retrieving natural images with free-hand sketches under zero-shot scenario. Previous works mostly focus on modeling the correspondence between images and sketches or synthesizing image features with sketch features. However, both of them ignore the large intra-class variance of sketches, thus resulting in unsatisfactory retrieval performance. In this paper, we propose a novel end-to-end semantic adversarial approach for ZS-SBIR. Specifically, we devise a semantic adversarial module to maximize the consistency between learned semantic features and category-level word vectors. Moreover, to preserve the discriminability of synthesized features within each training category, a triplet loss is employed for the generative module. Additionally, the proposed model is trained in an end-to-end strategy to exploit better semantic features suitable for ZS-SBIR. Extensive experiments conducted on two large-scale popular datasets demonstrate that our proposed approach remarkably outperforms state-of-the-art approaches by more than 12\% on Sketchy dataset and about 3\% on TU-Berlin dataset in the retrieval.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.