Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions (1905.02313v1)

Published 7 May 2019 in cs.DS, cs.LG, and stat.ML

Abstract: We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to $e{-f}$ where $f:\mathbb{R}d \to \mathbb{R}$ is $\mu$-strongly convex and $L$-smooth (the condition number is $\kappa = L/\mu$). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is $O(\kappa)$, improving on the previous best bound of $O(\kappa{1.5})$; we complement this with an example where the relaxation time is $\Omega(\kappa)$. When implemented using a nearly optimal ODE solver, HMC returns an $\varepsilon$-approximate point in $2$-Wasserstein distance using $\widetilde{O}((\kappa d){0.5} \varepsilon{-1})$ gradient evaluations per step and $\widetilde{O}((\kappa d){1.5}\varepsilon{-1})$ total time.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: