Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions (1905.02313v1)
Abstract: We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to $e{-f}$ where $f:\mathbb{R}d \to \mathbb{R}$ is $\mu$-strongly convex and $L$-smooth (the condition number is $\kappa = L/\mu$). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is $O(\kappa)$, improving on the previous best bound of $O(\kappa{1.5})$; we complement this with an example where the relaxation time is $\Omega(\kappa)$. When implemented using a nearly optimal ODE solver, HMC returns an $\varepsilon$-approximate point in $2$-Wasserstein distance using $\widetilde{O}((\kappa d){0.5} \varepsilon{-1})$ gradient evaluations per step and $\widetilde{O}((\kappa d){1.5}\varepsilon{-1})$ total time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.