Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automatic Syntax Error Reporting and Recovery in Parsing Expression Grammars (1905.02145v2)

Published 6 May 2019 in cs.PL and cs.FL

Abstract: Error recovery is an essential feature for a parser that should be plugged in Integrated Development Environments (IDEs), which must build Abstract Syntax Trees (ASTs) even for syntactically invalid programs in order to offer features such as automated refactoring and code completion. Parsing Expressions Grammars (PEGs) are a formalism that naturally describes recursive top-down parsers using a restricted form of backtracking. Labeled failures are a conservative extension of PEGs that adds an error reporting mechanism for PEG parsers, and these labels can also be associated with recovery expressions to provide an error recovery mechanism. These expressions can use the full expressivity of PEGs to recover from syntactic errors. Manually annotating a large grammar with labels and recovery expressions can be difficult. In this work, we present two approaches, Standard and Unique, to automatically annotate a PEG with labels, and to build their corresponding recovery expressions. The Standard approach annotates a grammar in a way similar to manual annotation, but it may insert labels incorrectly, while the Unique approach is more conservative to annotate a grammar and does not insert labels incorrectly. We evaluate both approaches by using them to generate error recovering parsers for four programming languages: Titan, C, Pascal and Java. In our evaluation, the parsers produced using the Standard approach, after a manual intervention to remove the labels incorrectly added, gave an acceptable recovery for at least 70% of the files in each language. By it turn, the acceptable recovery rate of the parsers produced via the Unique approach, without the need of manual intervention, ranged from 41% to 76%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.