Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural Chinese Word Segmentation with Lexicon and Unlabeled Data via Posterior Regularization (1905.01963v1)

Published 26 Apr 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Existing methods for CWS usually rely on a large number of labeled sentences to train word segmentation models, which are expensive and time-consuming to annotate. Luckily, the unlabeled data is usually easy to collect and many high-quality Chinese lexicons are off-the-shelf, both of which can provide useful information for CWS. In this paper, we propose a neural approach for Chinese word segmentation which can exploit both lexicon and unlabeled data. Our approach is based on a variant of posterior regularization algorithm, and the unlabeled data and lexicon are incorporated into model training as indirect supervision by regularizing the prediction space of CWS models. Extensive experiments on multiple benchmark datasets in both in-domain and cross-domain scenarios validate the effectiveness of our approach.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube