Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The gradient discretisation method for slow and fast diffusion porous media equations (1905.01785v3)

Published 6 May 2019 in math.NA and cs.NA

Abstract: The gradient discretisation method (GDM) is a generic framework for designing and analysing numerical schemes for diffusion models. In this paper, we study the GDM for the porous medium equation, including fast diffusion and slow diffusion models, and a concentration-dependent diffusion tensor. Using discrete functional analysis techniques, we establish a strong $L2$-convergence of the approximate gradients and a uniform-in-time convergence for the approximate solution, without assuming non-physical regularity assumptions on the data or continuous solution. Being established in the generic GDM framework, these results apply to a variety of numerical methods, such as finite volume, (mass-lumped) finite elements, etc. The theoretical results are illustrated, in both fast and slow diffusion regimes, by numerical tests based on two methods that fit the GDM framework: mass-lumped conforming $\mathbb{P}_1$ finite elements and the Hybrid Mimetic Mixed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.