Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Investigating the Successes and Failures of BERT for Passage Re-Ranking (1905.01758v1)

Published 5 May 2019 in cs.IR and cs.CL

Abstract: The bidirectional encoder representations from transformers (BERT) model has recently advanced the state-of-the-art in passage re-ranking. In this paper, we analyze the results produced by a fine-tuned BERT model to better understand the reasons behind such substantial improvements. To this aim, we focus on the MS MARCO passage re-ranking dataset and provide potential reasons for the successes and failures of BERT for retrieval. In more detail, we empirically study a set of hypotheses and provide additional analysis to explain the successful performance of BERT.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube