Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection (1905.01583v1)

Published 5 May 2019 in cs.CV

Abstract: Although traffic sign detection has been studied for years and great progress has been made with the rise of deep learning technique, there are still many problems remaining to be addressed. For complicated real-world traffic scenes, there are two main challenges. Firstly, traffic signs are usually small size objects, which makes it more difficult to detect than large ones; Secondly, it is hard to distinguish false targets which resemble real traffic signs in complex street scenes without context information. To handle these problems, we propose a novel end-to-end deep learning method for traffic sign detection in complex environments. Our contributions are as follows: 1) We propose a multi-resolution feature fusion network architecture which exploits densely connected deconvolution layers with skip connections, and can learn more effective features for the small size object; 2) We frame the traffic sign detection as a spatial sequence classification and regression task, and propose a vertical spatial sequence attention (VSSA) module to gain more context information for better detection performance. To comprehensively evaluate the proposed method, we do experiments on several traffic sign datasets as well as the general object detection dataset and the results have shown the effectiveness of our proposed method.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.