Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Teaching on a Budget in Multi-Agent Deep Reinforcement Learning (1905.01357v2)

Published 19 Apr 2019 in cs.MA and cs.LG

Abstract: Deep Reinforcement Learning (RL) algorithms can solve complex sequential decision tasks successfully. However, they have a major drawback of having poor sample efficiency which can often be tackled by knowledge reuse. In Multi-Agent Reinforcement Learning (MARL) this drawback becomes worse, but at the same time, a new set of opportunities to leverage knowledge are also presented through agent interactions. One promising approach among these is peer-to-peer action advising through a teacher-student framework. Despite being introduced for single-agent RL originally, recent studies show that it can also be applied to multi-agent scenarios with promising empirical results. However, studies in this line of research are currently very limited. In this paper, we propose heuristics-based action advising techniques in cooperative decentralised MARL, using a nonlinear function approximation based task-level policy. By adopting Random Network Distillation technique, we devise a measurement for agents to assess their knowledge in any given state and be able to initiate the teacher-student dynamics with no prior role assumptions. Experimental results in a gridworld environment show that such an approach may indeed be useful and needs to be further investigated.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.