Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Auditing ImageNet: Towards a Model-driven Framework for Annotating Demographic Attributes of Large-Scale Image Datasets (1905.01347v2)

Published 3 May 2019 in cs.LG, cs.CL, and cs.CY

Abstract: The ImageNet dataset ushered in a flood of academic and industry interest in deep learning for computer vision applications. Despite its significant impact, there has not been a comprehensive investigation into the demographic attributes of images contained within the dataset. Such a study could lead to new insights on inherent biases within ImageNet, particularly important given it is frequently used to pretrain models for a wide variety of computer vision tasks. In this work, we introduce a model-driven framework for the automatic annotation of apparent age and gender attributes in large-scale image datasets. Using this framework, we conduct the first demographic audit of the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) subset of ImageNet and the "person" hierarchical category of ImageNet. We find that 41.62% of faces in ILSVRC appear as female, 1.71% appear as individuals above the age of 60, and males aged 15 to 29 account for the largest subgroup with 27.11%. We note that the presented model-driven framework is not fair for all intersectional groups, so annotation are subject to bias. We present this work as the starting point for future development of unbiased annotation models and for the study of downstream effects of imbalances in the demographics of ImageNet. Code and annotations are available at: http://bit.ly/ImageNetDemoAudit

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.