Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Single Image 3D Hand Reconstruction with Mesh Convolutions (1905.01326v3)

Published 4 May 2019 in cs.CV

Abstract: Monocular 3D reconstruction of deformable objects, such as human body parts, has been typically approached by predicting parameters of heavyweight linear models. In this paper, we demonstrate an alternative solution that is based on the idea of encoding images into a latent non-linear representation of meshes. The prior on 3D hand shapes is learned by training an autoencoder with intrinsic graph convolutions performed in the spectral domain. The pre-trained decoder acts as a non-linear statistical deformable model. The latent parameters that reconstruct the shape and articulated pose of hands in the image are predicted using an image encoder. We show that our system reconstructs plausible meshes and operates in real-time. We evaluate the quality of the mesh reconstructions produced by the decoder on a new dataset and show latent space interpolation results. Our code, data, and models will be made publicly available.

Citations (54)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.