Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Transfer of Adversarial Robustness Between Perturbation Types (1905.01034v1)

Published 3 May 2019 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: We study the transfer of adversarial robustness of deep neural networks between different perturbation types. While most work on adversarial examples has focused on $L_\infty$ and $L_2$-bounded perturbations, these do not capture all types of perturbations available to an adversary. The present work evaluates 32 attacks of 5 different types against models adversarially trained on a 100-class subset of ImageNet. Our empirical results suggest that evaluating on a wide range of perturbation sizes is necessary to understand whether adversarial robustness transfers between perturbation types. We further demonstrate that robustness against one perturbation type may not always imply and may sometimes hurt robustness against other perturbation types. In light of these results, we recommend evaluation of adversarial defenses take place on a diverse range of perturbation types and sizes.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.