Papers
Topics
Authors
Recent
2000 character limit reached

Extending discrete exterior calculus to a fractional derivative (1905.00992v2)

Published 2 May 2019 in math.NA, cs.GR, and cs.NA

Abstract: Fractional partial differential equations (FDEs) are used to describe phenomena that involve a "non-local" or "long-range" interaction of some kind. Accurate and practical numerical approximation of their solutions is challenging due to the dense matrices arising from standard discretization procedures. In this paper, we begin to extend the well-established computational toolkit of Discrete Exterior Calculus (DEC) to the fractional setting, focusing on proper discretization of the fractional derivative. We define a Caputo-like fractional discrete derivative, in terms of the standard discrete exterior derivative operator from DEC, weighted by a measure of distance between $p$-simplices in a simplicial complex. We discuss key theoretical properties of the fractional discrete derivative and compare it to the continuous fractional derivative via a series of numerical experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.