Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A tutorial on recursive models for analyzing and predicting path choice behavior (1905.00883v2)

Published 2 May 2019 in stat.ML and cs.LG

Abstract: The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.