Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Self-supervised Learning for Video Correspondence Flow (1905.00875v5)

Published 2 May 2019 in cs.CV and cs.LG

Abstract: The objective of this paper is self-supervised learning of feature embeddings that are suitable for matching correspondences along the videos, which we term correspondence flow. By leveraging the natural spatial-temporal coherence in videos, we propose to train a ``pointer'' that reconstructs a target frame by copying pixels from a reference frame. We make the following contributions: First, we introduce a simple information bottleneck that forces the model to learn robust features for correspondence matching, and prevent it from learning trivial solutions, \eg matching based on low-level colour information. Second, to tackle the challenges from tracker drifting, due to complex object deformations, illumination changes and occlusions, we propose to train a recursive model over long temporal windows with scheduled sampling and cycle consistency. Third, we achieve state-of-the-art performance on DAVIS 2017 video segmentation and JHMDB keypoint tracking tasks, outperforming all previous self-supervised learning approaches by a significant margin. Fourth, in order to shed light on the potential of self-supervised learning on the task of video correspondence flow, we probe the upper bound by training on additional data, \ie more diverse videos, further demonstrating significant improvements on video segmentation.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube