Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Knowledge Authoring and Question Answering with KALM (1905.00840v3)

Published 2 May 2019 in cs.AI and cs.CL

Abstract: Knowledge representation and reasoning (KRR) is one of the key areas in AI field. It is intended to represent the world knowledge in formal languages (e.g., Prolog, SPARQL) and then enhance the expert systems to perform querying and inference tasks. Currently, constructing large scale knowledge bases (KBs) with high quality is prohibited by the fact that the construction process requires many qualified knowledge engineers who not only understand the domain-specific knowledge but also have sufficient skills in knowledge representation. Unfortunately, qualified knowledge engineers are in short supply. Therefore, it would be very useful to build a tool that allows the user to construct and query the KB simply via text. Although there is a number of systems developed for knowledge extraction and question answering, they mainly fail in that these system don't achieve high enough accuracy whereas KRR is highly sensitive to erroneous data. In this thesis proposal, I will present Knowledge Authoring Logic Machine (KALM), a rule-based system which allows the user to author knowledge and query the KB in text. The experimental results show that KALM achieved superior accuracy in knowledge authoring and question answering as compared to the state-of-the-art systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.