Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Face Identification using Local Ternary Tree Pattern based Spatial Structural Components (1905.00693v2)

Published 2 May 2019 in cs.CV

Abstract: This paper reports a face identification system which makes use of a novel local descriptor called Local Ternary Tree Pattern (LTTP). Exploiting and extracting distinctive local descriptor from a face image plays a crucial role in face identification task in the presence of a variety of face images including constrained, unconstrained and plastic surgery images. LTTP has been used to extract robust and useful spatial features which use to describe the various structural components on a face. To extract the features, a ternary tree is formed for each pixel with its eight neighbors in each block. LTTP pattern can be generated in four forms such as LTTP Left Depth (LTTP LD), LTTP Left Breadth (LTTP LB), LTTP Right Depth (LTTP RD) and LTTP Right Breadth (LTTP RB). The encoding schemes of these patterns are very simple and efficient in terms of computational as well as time complexity. The proposed face identification system is tested on six face databases, namely, the UMIST, the JAFFE, the extended Yale face B, the Plastic Surgery, the LFW and the UFI. The experimental evaluation demonstrates the most promising results considering a variety of faces captured under different environments. The proposed LTTP based system is also compared with some local descriptors under identical conditions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube