Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Estimating Kullback-Leibler Divergence Using Kernel Machines (1905.00586v2)

Published 2 May 2019 in cs.LG and stat.ML

Abstract: Recently, a method called the Mutual Information Neural Estimator (MINE) that uses neural networks has been proposed to estimate mutual information and more generally the Kullback-Leibler (KL) divergence between two distributions. The method uses the Donsker-Varadhan representation to arrive at the estimate of the KL divergence and is better than the existing estimators in terms of scalability and flexibility. The output of MINE algorithm is not guaranteed to be a consistent estimator. We propose a new estimator that instead of searching among functions characterized by neural networks searches the functions in a Reproducing Kernel Hilbert Space. We prove that the proposed estimator is consistent. We carry out simulations and show that when the datasets are small the proposed estimator is more reliable than the MINE estimator and when the datasets are large the performance of the two methods are close.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)