Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-level Encoder-Decoder Architectures for Image Restoration (1905.00322v3)

Published 1 May 2019 in eess.IV and cs.CV

Abstract: Many real-world solutions for image restoration are learning-free and based on handcrafted image priors such as self-similarity. Recently, deep-learning methods that use training data have achieved state-of-the-art results in various image restoration tasks (e.g., super-resolution and inpainting). Ulyanov et al. bridge the gap between these two families of methods (CVPR 18). They have shown that learning-free methods perform close to the state-of-the-art learning-based methods (approximately 1 PSNR). Their approach benefits from the encoder-decoder network. In this paper, we propose a framework based on the multi-level extensions of the encoder-decoder network, to investigate interesting aspects of the relationship between image restoration and network construction independent of learning. Our framework allows various network structures by modifying the following network components: skip links, cascading of the network input into intermediate layers, a composition of the encoder-decoder subnetworks, and network depth. These handcrafted network structures illustrate how the construction of untrained networks influence the following image restoration tasks: denoising, super-resolution, and inpainting. We also demonstrate image reconstruction using flash and no-flash image pairs. We provide performance comparisons with the state-of-the-art methods for all the restoration tasks above.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.