Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-performance sampling of generic Determinantal Point Processes (1905.00165v2)

Published 1 May 2019 in math.NA and cs.NA

Abstract: Determinantal Point Processes (DPPs) were introduced by Macchi as a model for repulsive (fermionic) particle distributions. But their recent popularization is largely due to their usefulness for encouraging diversity in the final stage of a recommender system. The standard sampling scheme for finite DPPs is a spectral decomposition followed by an equivalent of a randomly diagonally-pivoted Cholesky factorization of an orthogonal projection, which is only applicable to Hermitian kernels and has an expensive setup cost. Researchers have begun to connect DPP sampling to $LDLH$ factorizations as a means of avoiding the initial spectral decomposition, but existing approaches have only outperformed the spectral decomposition approach in special circumstances, where the number of kept modes is a small percentage of the ground set size. This article proves that trivial modifications of $LU$ and $LDLH$ factorizations yield efficient direct sampling schemes for non-Hermitian and Hermitian DPP kernels, respectively. Further, it is experimentally shown that even dynamically-scheduled, shared-memory parallelizations of high-performance dense and sparse-direct factorizations can be trivially modified to yield DPP sampling schemes with essentially identical performance. The software developed as part of this research, Catamari, https://hodgestar.com/catamari, is released under the Mozilla Public License v2.0. It contains header-only, C++14 plus OpenMP 4.0 implementations of dense and sparse-direct, Hermitian and non-Hermitian DPP samplers.

Citations (26)

Summary

We haven't generated a summary for this paper yet.